FRM的考試中,包含了一些概率論和統(tǒng)計(jì)學(xué)相關(guān)的內(nèi)容,因此,有一些統(tǒng)計(jì)模擬方法需要考生來掌握。蒙特卡羅方法就是FRM考試的考點(diǎn)之一,接下來,高頓網(wǎng)校FRM小編就為大家簡單介紹一下。
  蒙特·卡羅方法(Monte Carlo method),也稱統(tǒng)計(jì)模擬方法,是二十世紀(jì)四十年代中期由于科學(xué)技術(shù)的發(fā)展和電子計(jì)算機(jī)的發(fā)明,而被提出的一種以概率統(tǒng)計(jì)理論為指導(dǎo)的一類非常重要的數(shù)值計(jì)算方法。是指使用隨機(jī)數(shù)(或更常見的偽隨機(jī)數(shù))來解決很多計(jì)算問題的方法。與它對應(yīng)的是確定性算法。蒙特·卡羅方法在金融工程學(xué),宏觀經(jīng)濟(jì)學(xué),計(jì)算物理學(xué)(如粒子輸運(yùn)計(jì)算、量子熱力學(xué)計(jì)算、空氣動(dòng)力學(xué)計(jì)算)等領(lǐng)域應(yīng)用廣泛。
  基本思想
  當(dāng)所求解問題是某種隨機(jī)事件出現(xiàn)的概率,或者是某個(gè)隨機(jī)變量的期望值時(shí),通過某種“實(shí)驗(yàn)”的方法,以這種事件出現(xiàn)的頻率估計(jì)這一隨機(jī)事件的概率,或者得到這個(gè)隨機(jī)變量的某些數(shù)字特征,并將其作為問題的解。
  解題過程
  蒙特卡羅方法的解題過程可以歸結(jié)為三個(gè)主要步驟:構(gòu)造或描述概率過程;實(shí)現(xiàn)從已知概率分布抽樣;建立各種估計(jì)量。
  蒙特卡羅方法解題過程的三個(gè)主要步驟:
 ?。?)構(gòu)造或描述概率過程
  對于本身就具有隨機(jī)性質(zhì)的問題,如粒子輸運(yùn)問題,主要是正確描述和模擬這個(gè)概率過 程,對于本來不是隨機(jī)性質(zhì)的確定性問題,比如計(jì)算定積分,就必須事先構(gòu)造一個(gè)人為的概率過程,它的某些參量正好是所要求問題的解。即要將不具有隨機(jī)性質(zhì)的問題轉(zhuǎn)化為隨機(jī)性質(zhì)的問題。
  (2)實(shí)現(xiàn)從已知概率分布抽樣
  構(gòu)造了概率模型以后,由于各種概率模型都可以看作是由各種各樣的概率分布構(gòu)成的,因此產(chǎn)生已知概率分布的隨機(jī)變量(或隨機(jī)向量),就成為實(shí)現(xiàn)蒙特卡羅方法模擬實(shí)驗(yàn)的基本手段,這也是蒙特卡羅方法被稱為隨機(jī)抽樣的原因。最簡單、最基本、最重要的一個(gè)概率分布是(0,1)上的均勻分布(或稱矩形分布)。隨機(jī)數(shù)就是具有這種均勻分布的隨機(jī)變量。隨機(jī)數(shù)序列就是具有這種分布的總體的一個(gè)簡單子樣,也就是一個(gè)具有這種分布的相互獨(dú)立的隨機(jī)變數(shù)序列。產(chǎn)生隨機(jī)數(shù)的問題,就是從這個(gè)分布的抽樣問題。在計(jì)算機(jī)上,可以用物理方法產(chǎn)生隨機(jī)數(shù),但價(jià)格昂貴,不能重復(fù),使用不便。另一種方法是用數(shù)學(xué)遞推公式產(chǎn)生。這樣產(chǎn)生的序列,與真正的隨機(jī)數(shù)序列不同,所以稱為偽隨機(jī)數(shù),或偽隨機(jī)數(shù)序列。不過,經(jīng)過多種統(tǒng)計(jì)檢驗(yàn)表明,它與真正的隨機(jī)數(shù),或隨機(jī)數(shù)序列具有相近的性質(zhì),因此可把它作為真正的隨機(jī)數(shù)來使用。由已知分布隨機(jī)抽樣有各種方法,與從(0,1)上均勻分布抽樣不同,這些方法都是借助于隨機(jī)序列來實(shí)現(xiàn)的,也就是說,都是以產(chǎn)生隨機(jī)數(shù)為前提的。由此可見,隨機(jī)數(shù)是我們實(shí)現(xiàn)蒙特卡羅模擬的基本工具。
  (3)建立各種估計(jì)量
  一般說來,構(gòu)造了概率模型并能從中抽樣后,即實(shí)現(xiàn)模擬實(shí)驗(yàn)后,我們就要確定一個(gè)隨機(jī)變量,作為所要求的問題的解,我們稱它為無偏估計(jì)。建立各種估計(jì)量,相當(dāng)于對模擬實(shí)驗(yàn)的結(jié)果進(jìn)行考察和登記,從中得到問題的解。
  數(shù)學(xué)應(yīng)用:
  通常蒙特·卡羅方法通過構(gòu)造符合一定規(guī)則的隨機(jī)數(shù)來解決數(shù)學(xué)上的各種問題。對于那些由于計(jì)算過于復(fù)雜而難以得到解析解或者根本沒有解析解的問題,蒙特·卡羅方法是一種有效的求出數(shù)值解的方法。一般蒙特·卡羅方法在數(shù)學(xué)中最常見的應(yīng)用就是蒙特·卡羅積分。