考試內容

多元函數的概念二元函數的幾何意義二元函數的極限與連續(xù)的概念有界閉區(qū)域上多元連續(xù)函數的性質多元函數的偏導數和全微分全微分存在的必要條件和充分條件

多元復合函數、隱函數的求導法二階偏導數方向導數和梯度空間曲線的切線和法平面曲面的切平面和法線二元函數的二階泰勒公式多元函數的極值和條件極值多元函數的最大值、最小值及其簡單應用

考試要求

1.理解多元函數的概念,理解二元函數的幾何意義.

2.了解二元函數的極 限與連續(xù)的概念以及有界閉區(qū)域上連續(xù)函數的性質.

3.理解多元函數偏導數和全微分的概念,會求全微分,了解全微分存在的必要條件和充分條件,了解全微分形式的不變性.

4.理解方向導數與梯度的概念,并掌握其計算方法.

5.掌握多元復合函數一階、二階偏導數的求法.

6.了解隱函數存在定理,會求多元隱函數的偏導數.

7.了解空間曲線的切線和法平面及曲面的切平面和法線的概念,會求它們的方程.

8.了解二元函數的二階泰勒公式.

9.理解多元函數極值和條件極值的概念,掌握多元函數極值存在的必要條件,了解二元函數極值存在的充分條件,會求二元函數的極值,會用拉格朗日乘數法求條件極值,會求簡單多元函數的最大值和最小值,并會解決一些簡單的應用問題.