第一部分高等數(shù)學(xué)
?。ㄒ唬?、函數(shù)、極限、連續(xù)
考試內(nèi)容
函數(shù)的概念及表示法,函數(shù)的有界性、單調(diào)性、周期性和奇偶性,復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù),基本初等函數(shù)的性質(zhì)及其圖形,初等函數(shù),函數(shù)關(guān)系的建立,數(shù)列極限與函數(shù)極限的定義以及性質(zhì),函數(shù)的左極限與右極限,無窮小量與無窮大量的概念及其關(guān)系,無窮小量的性質(zhì)及無窮小量的比較,極限的四則運(yùn)算,極限存在的兩個(gè)準(zhǔn)則:單調(diào)有界準(zhǔn)則和夾逼準(zhǔn)則,兩個(gè)重要極限:
函數(shù)連續(xù)的概念,函數(shù)間斷點(diǎn)的類型,初等函數(shù)的連續(xù)性,閉區(qū)間上連續(xù)函數(shù)的性質(zhì)。
考試要求
1.理解函數(shù)的概念,掌握函數(shù)的表示法,并會(huì)建立應(yīng)用問題的函數(shù)關(guān)系。
2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性。
3.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念。
4.掌握基本初等函數(shù)的性質(zhì)及圖形,了解初等函數(shù)的概念。
5.理解極限的概念,理解函數(shù)的左極限與右極限的概念以及函數(shù)極限存在與左、右極限之間的關(guān)系。
6.掌握極限的性質(zhì)及四則運(yùn)算法則。
7.掌握極限存在的兩個(gè)準(zhǔn)則,并會(huì)利用它們求極限,掌握利用兩個(gè)重要極限求極限的方法。
8.理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會(huì)用等價(jià)無窮小量求極限。
9.理解函數(shù)連續(xù)性的概念,會(huì)判別函數(shù)的間斷點(diǎn)的類型。
10.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會(huì)應(yīng)用這些性質(zhì)。
?。ǘ?、一元函數(shù)微分學(xué)
考試內(nèi)容
導(dǎo)數(shù)和微分的概念,導(dǎo)數(shù)的幾何意義和物理意義,函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系,平面曲線的切線和法線,導(dǎo)數(shù)和微分的四則運(yùn)算,基本初等函數(shù)的導(dǎo)數(shù),復(fù)合函數(shù)、反函數(shù)、隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法,高階導(dǎo)數(shù),一階微分形式的不變性,微分中值定理,洛必達(dá)法則,函數(shù)單調(diào)性的判別,函數(shù)的極值,函數(shù)圖形的凹凸性、拐點(diǎn)及漸近線,函數(shù)圖形的描繪,函數(shù)的最大值和最小值,弧微分,曲率的概念,曲率圓與曲率半徑。
考試要求
l.理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)和微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會(huì)求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會(huì)用導(dǎo)數(shù)描述一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性的關(guān)系。
2.掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公式。了解微分的四則運(yùn)算法則和一階微分形式的不變性,會(huì)求函數(shù)的微分。
3.了解高階導(dǎo)數(shù)的概念,會(huì)求簡單函數(shù)的高階導(dǎo)數(shù)。
4.會(huì)求分段函數(shù)的導(dǎo)數(shù),會(huì)求隱函數(shù)和由參數(shù)方程所確定的函數(shù)及反函數(shù)的導(dǎo)數(shù)。
5.理解并會(huì)用羅爾定理、拉格朗日中值定理和泰勒定理,了解并會(huì)用柯西中值定理。
6.掌握用洛必達(dá)法則求未定式極限的方法。
7.理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其應(yīng)用.
8.會(huì)用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性,會(huì)求函數(shù)圖形的拐點(diǎn)以及水平和鉛直漸近線,會(huì)描繪函數(shù)的圖形。
9.了解曲率、曲率圓與曲率半徑的概念,會(huì)計(jì)算曲率和曲率半徑。
?。ㄈ⒁辉瘮?shù)的積分學(xué)
考試內(nèi)容
原函數(shù)和不定積分的概念,不定積分的基本性質(zhì),基本積分公式,定積分的概念和基本性質(zhì),定積分中值定理,積分上限的函數(shù)及其導(dǎo)數(shù),牛頓-萊布尼茨公式,不定積分和定積分的換元積分法與分部積分法,有理函數(shù)、三角函數(shù)的有理式和簡單無理函數(shù)的積分,廣義積分,定積分的應(yīng)用。
考試要求
1.理解原函數(shù)的概念,理解不定積分和定積分的概念。
2.掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法與分部積分法。
3.會(huì)求有理函數(shù)、三角函數(shù)有理式和簡單無理函數(shù)的積分。
4.理解積分上限的函數(shù),會(huì)求它的導(dǎo)數(shù),掌握牛頓-萊布尼茨公式。
5.了解廣義積分的概念,會(huì)計(jì)算廣義積分。
6.掌握用定積分表達(dá)和計(jì)算一些幾何量和物理量(平面圖形的面積、平面曲線的弧長、旋轉(zhuǎn)體的體積及側(cè)面積、平行截面面積為己知的立體體積、功、引力、壓力、質(zhì)心、形心等)及函數(shù)的平均值.
?。ㄋ模?、多元函數(shù)微分學(xué)
考試內(nèi)容
多元函數(shù)的概念,二元函數(shù)的幾何意義,二元函數(shù)的極限與連續(xù)的概念,有界閉區(qū)域上多元連續(xù)函數(shù)的性質(zhì),多元函數(shù)的偏導(dǎo)數(shù)和全微分,全微分存在的必要條件和充分條件,多元復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法,二階偏導(dǎo)數(shù),方向?qū)?shù)和梯度,空間曲線的切線與法平面,曲面的切平面與法線,多元函數(shù)的極值和條件極值,多元函數(shù)的最大值、最小值及其簡單應(yīng)用。
考試要求
1.理解多元函數(shù)的概念,理解二元函數(shù)的幾何意義。
2.了解二元函數(shù)的極限與連續(xù)的概念以及有界閉區(qū)域上連續(xù)函數(shù)的性質(zhì)。
3.理解多元函數(shù)偏導(dǎo)數(shù)和全微分的概念,會(huì)求全微分,了解全微分存在的必要條件和充分條件,了解全微分形式的不變性。
4.理解方向?qū)?shù)與梯度的概念,掌握其計(jì)算方法。
5.掌握多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù)的求法。
6.了解隱函數(shù)存在定理,會(huì)求多元隱函數(shù)的偏導(dǎo)數(shù)
7.了解空間曲線的切線和法平面及曲面的切平面和法線的概念,會(huì)求它們的方程。
8.理解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會(huì)求二元函數(shù)的極值;會(huì)用拉格朗日乘數(shù)法求條件極值,會(huì)求簡單多元函數(shù)的最大值和最小值,并會(huì)解決一些簡單的應(yīng)用問題。
?。ㄎ澹?、常微分方程
考試內(nèi)容
常微分方程的基本概念,變量可分離的微分方程,齊次微分方程,一階線性微分方程,可降階的高階微分方程,線性微分方程組解的性質(zhì)及解的結(jié)構(gòu)定理,二階常系數(shù)齊次線性微分方程,高于二階的某些常系數(shù)齊次線性微分方程,簡單的二階常系數(shù)非齊次線性微分方程。
考試要求
l.了解微分方程及其階、解、通解、初始條件和特解等概念。
2.掌握變量可分離的微分方程及一階線性方程的解法,會(huì)求齊次微分方程。
3.會(huì)用降階法求下列微分方程:
和
4.理解線性微分方程解的性質(zhì)及解的結(jié)構(gòu)。
5.掌握二階常系數(shù)齊次線性微分方程的解法,并會(huì)解某些高于二階的常系數(shù)齊次線性微分方程。
6.會(huì)解自由項(xiàng)為多項(xiàng)式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)以及它們的和與積的二階常系數(shù)非齊次線性微分方程。
第二部分線性代數(shù)初步
?。ㄒ唬⑿辛惺?br> 考試內(nèi)容
行列式的概念和基本性質(zhì),行列式按行(列)展開定理。
考試要求
1.了解行列式的概念,掌握行列式的性質(zhì)。
2.會(huì)應(yīng)用行列式的性質(zhì)及行列式按行(列)展開定理計(jì)算行列式。
?。ǘ⒕仃?br> 考試內(nèi)容
矩陣的概念,矩陣的線性運(yùn)算,矩陣的乘法,方陣的冪,方陣乘積的行列式,矩陣的轉(zhuǎn)置,逆矩陣的概念和性質(zhì),矩陣可逆的充分必要條件,伴隨矩陣,矩陣的初等變換,初等矩陣,矩陣的秩,矩陣的等價(jià),分塊矩陣及其運(yùn)算。
考試要求
1.理解矩陣的概念。了解單位矩陣、對(duì)角矩陣、三角矩陣和對(duì)稱矩陣以及它們的性質(zhì)。
2.掌握矩陣的線性運(yùn)算、乘法、轉(zhuǎn)置以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì)。
3.理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件。理解伴隨矩陣的概念,會(huì)用伴隨矩陣求逆矩陣。
4.理解矩陣初等變換的概念,了解初等矩陣的性質(zhì)和矩陣等價(jià)的概念,理解矩陣的秩的概念。掌握用初等變換求矩陣的秩和逆矩陣的方法。
5.了解分塊矩陣及其運(yùn)算。
(三)、線性方程組
考試內(nèi)容
向量的概念,向量的線性組合和線性表示,向量組的線性相關(guān)與線性無關(guān),向量組的極大無關(guān)組,向量組的秩,向量組的秩與矩陣的秩之間的關(guān)系,線性方程組的克萊姆法則,齊次線性方程組有非零解的充分必要條件,非齊次線性方程組有解的充分必要條件,線性方程組解的性質(zhì)和解的結(jié)構(gòu),齊次線性方程組的基礎(chǔ)解系和通解,非齊次線性方程組的通解。
考試要求
1.理解n維向量、向量的線性組合和線性表示的概念。
2.理解向量組線性相關(guān)、線性無關(guān)的概念,掌握向量組線性相關(guān)、線性無關(guān)的有關(guān)性質(zhì)及判別法。
3.理解向量組的極大無關(guān)組與向量組的秩的概念,會(huì)求向量組的極大無關(guān)組及秩。
4.會(huì)用克萊姆法則。
5.理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件。
6.理解齊次線性方程組的基礎(chǔ)解系及通解的概念,掌握齊次線性方程組的基礎(chǔ)解系及通解的求法。
7.理解非齊次線性方程組解的結(jié)構(gòu)及通解的概念。
8.掌握用初等行變換求解線性方程組的方法。
以上就是【2024西北工業(yè)大學(xué)601數(shù)學(xué)考研大綱公布了嗎?】的全部內(nèi)容!想了解更多考研相關(guān)信息,請(qǐng)關(guān)注高頓考研官網(wǎng),查詢最新考研動(dòng)態(tài)!預(yù)祝大家24考研成功,如愿考上自己理想的學(xué)校!